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SQIF Array Dynamics
                                                                                              

1. Abstract

        We develop an analytic perturbation solution for single-cell SQUIDs and for multi-cell rows 

with random cell sizes (constrained by having a mirror symmetry about the center junction).  The 

response of a single SQUID to an external RF signal is determined in terms of correlation 

functions between the phase of the inline effective junction and the circulating current.  This 

yields an RF phase shift that can be calculated as a function of the circuit parameters and the 

signal frequency.  Summing the phase-shifted RF voltages of many random-cell-size SQUIDs in 

series yields the SQIF RF response.

 
2. Characterization of SQIF’s as RF Detectors

    SQIF arrays were originally developed to detect extremely small static and quasistatic 

magnetic fields.  The paper by Schopohl  et. al.1 showed how it was possible to approximate the 

RF response of a SQIF array to a low frequency RF signal by using the transfer function (DC 

voltage vs external magnetic field) in the narrow region near zero magnetic field, where the 

transfer function is essentially linear.  In a SQIF array the interference of the voltages of the 

random-area-SQUID loops in the array leads to the steep slope of the transfer function near the 

origin, which should be the only place where the voltages interfere constructively.  

     To characterize the merit of a SQIF array as an RF detector, it is necessary to take into 

account both the Johnson-Nyquist noise of the array junctions and the appearance of intrinsic 

nonlinear effects which determine the range of signal amplitudes in which the transfer function 

can  be considered linear.  The widely accepted figure of merit for RF detectors is the ‘spur free 

dynamic range’ (SFDR), which is a measure of the range of detector linearity, and is given by the 

range (in dB) where the detector response (v2) for two signals that are close in frequency is above 

the Johnson-Nyquist noise threshold, while the slightly frequency-shifted response due to cubic 

mixing (at ω=2ω1-ω2  or  ω=2ω2-ω1 ) remains below the noise threshold.

     The approach that we have taken is to fully determine the RF response of each row of a SQIF 

array to the magnetic component of an RF field, and sum the voltages to obtain the total RF 
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response.  This means that both the amplitude and RF phase of the response of each row at the 

signal frequency are determined, in contrast to the approach in [1] where the phase shifts of each 

row are taken to be the phase shifts at DC (i.e. those due to the static external flux)  which are 

then assumed to be applicable to low frequency signals.  The approach in [1] essentially treats the 

RF signal as an adiabatically changing flux bias.  

     To determine the SFDR of an array we start with the response of a single row, and with the 

simplest case of a single SQUID or a single row SQIF with zero inductance that can be treated as 

an equivalent effective single SQUID1.  The linear response of the effective SQUID when the 

input is a pair of small amplitude signals (amplitudes { arf ,1,arf ,2 } at frequencies {ω rf,1,ω rf ,2 } ) can 

be solved, with solutions in the form of a sum of sinusoids at the signal frequencies ωrf,i with 

amplitudes Ai and phase shifts Ψrf ,i .   For high Tc junctions βC ≈ 0 , and this allows good 

approximate solutions to be obtained for the unperturbed SQUID voltage  
ζDC  and induced flux 

ηDC = βLicirc , where the DC subscript refers to the response to φDC , the DC component of the 

magnetic flux threading the SQUID loop (the βC = 0 solution will be discussed further below).  If 

the linear response (δζRF )  is assumed to be a valid approximation for small amplitude RF signals, 

then it can be determined in terms of the correlation functions
 

              
sin(ζDC )sin(φDC +ηDC

2
)

  
 and   cos(ζDC )cos(φDC +ηDC

2
)                 		 	         (1)   

 as

            δζRF = Ai sin(ω rf , iτ − Ψrf , i )
i=1

2

∑ =
arf , i

2
⎛
⎝⎜

⎞
⎠⎟

sin(ζDC )sin(φDC +ηDC

2
)

ω rf , i
2 + cos(ζDC )cos(φDC +ηDC

2
)

2
sin(ω rf , iτ − Ψrf , i )

i=1

2

∑ ,                (2)

where the RF phase shifts are given by

              

Ψrf , i = sin−1 ω rf , i / ω rf , i
2 + cos(ζDC )cos(φDC +ηDC

2
)

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.

                              

                              (3)

                       

     It can be seen that as long as the coscos  correlation function is non-zero, the RF phase shift  

Ψrf  will approach zero as the signal frequency ω rf , i  goes to zero.  A useful corollary to this 
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behavior is that as the coscos  correlation function becomes small and of the same order as 

ω rf , i , the RF phase shift will depend sensitively on βL  or φDC  for fixed ω rf , i , or conversely it 

will be a steep function of ω rf , i  when βL  and φDC  are fixed.   It will be shown below that the 

correlation function coscos  becomes small when either βL or φDC  is small.  

3. Derivation of the Hamiltonians for Mirror Symmetric Row Arrays

    The row arrays that we shall treat here can be considered as a subset of the completely random 

SQIF array row described by Oppenlander et al.1 in that they are random but have  mirror 

symmetry about a central junction.  The Hamiltonians and equations of motion for mirror 

symmetric row arrays are described by Ncell +1 junction phases, along with Ncell  constraint 

equations, and Ncell  circulating currents (or their equivalent fluxes), for a total of Ncell +1  

independent coordinates.  The Ncell  constraints may be included in the Lagrangian along with 

Ncell  Lagrange multipliers before forming the Hamiltonian.  However, a simpler method is to 

transform to a set of Ncell +1 coordinates that include the constraints, which then yield one 

independent junction phase and Ncell  independent circulating currents.  We illustrate this with an 

Ncell = 4 array shown below, where the middle junction is allowed to have a critical current that 

differs from the remaining junctions by a factor of ρ.

                              

ξ1 ξ5
φ1 φ2 φ3 φ4ξ2 ξ3 ξ4

I / IC = (4 + ρ)ib  

	 	 	 	     Figure 1.   Four-Cell Array
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    We first transform the external fluxes {φ1, φ2 , φ3, φ4} to the set {φa , φb , φc , φs} , where             

φs = (φ1 + φ2 + φ3 + φ4 ) / 4  would be symmetric in all four fluxes (if the fluxes were equal), while 

the remaining Ncell −1  coordinates are the partly antisymmetric combinations

              

φa = (φ1 + φ2 −φ3 −φ4 ) / 4
φb = (φ1 −φ2 −φ3 + φ4 ) / 4
φc = (φ1 −φ2 + φ3 −φ4 ) / 4.

	 	 	 	 	 	 	 	         (4)

The Ncell induced fluxes ηk = βL ,kkicirc,k are transformed in an identical way.  By writing

ξ j = ζ + aj (φa +ηa ) + bj (φb +ηb ) + cj (φb +ηc ) + s j (φs +ηs ),  the constraint equations for the four 

cells, along with the demand that the coefficients of the four cross terms  
ζ φi  in the kinetic energy 

be zero,  can be solved to yield  a solution for the coefficients {ai ,bi ,ci , si} .   The transformation 

of the original junction phases are then given by

              

ξ1 = ζ + 2 (ρ +1)
(ρ + 4)

(φa +ηa ) + 2(φs +ηs ) +
2

(ρ + 4)
(φc +ηc )

ξ2 = ζ +
(ρ − 2)
(ρ + 4)

(φa +ηa ) + (φs +ηs ) − (φb +ηb ) − (ρ + 2)
(ρ + 4)

(φc +ηc )

ξ3 = ζ −
6

(ρ + 4)
(φa +ηa ) +

2
(ρ + 4)

(φc +ηc )

ξ4 = ζ +
(ρ − 2)
(ρ + 4)

(φa +ηa ) − (φs +ηs ) + (φb +ηb ) − (ρ + 2)
(ρ + 4)

(φc +ηc )

ξ5 = ζ + 2 (ρ +1)
(ρ + 4)

(φa +ηa ) − 2(φs +ηs ) +
2

(ρ + 4)
(φc +ηc ).

                               (5)

    It can be seen that the phase of the middle junction ξ3 will have contributions from the fluxes 

that are antisymmetric (if all cell fluxes are equal) about the center conductor in addition to that 
from the effective junction phase ζ .

    When ρ = 1  the effective phase ζ  may be obtained by summing all of the junction phases and 

dividing by five.  When ρ ≠ 1 ,  the expression for ζ  will also include flux terms multiplied by a 

factor proportional to (ρ −1) .   The expression for the junction potential energy may be written 

as
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VJJ / EJ = − cos(ξi
i=1

i=5

∑ )− (ρ −1)cos(ξ3)

    = −2cos[ζ + 2 ρ+1
ρ+4 (φa +ηa ) + 2

ρ+4 (φc +ηc )]cos[2(φs +ηs )]

− 2cos[ζ + ρ−2
ρ+4 (φa +ηa )− ρ+2

ρ+4 (φc +ηc )]cos[φs +ηs )− (φb +ηb )]
− ρ cos[ζ − 6

ρ+4 (φa +ηa ) + 2
ρ+4 (φc +ηc )].

           	                    (6)

 

    For the case of a two-cell SQUID, the transformed coordinates and junction potential function 

are given by
  

                 

ξ1 = ζ + (φs +ηs ) + ρ
(ρ + 2)

(φa +ηa )

ξ2 = ζ − 2
(ρ + 2)

(φa +ηa )

ξ3 = ζ − (φs +ηs ) + ρ
(ρ + 2)

(φa +ηa ),

	 	 	 	 	 	         (7)

and

             

VJJ / EJ = − cos(ξi
i=1

i=3

∑ )− (ρ −1)cos(ξ2 )

     = −2cos[ζ + ρ
ρ+2 (φa +ηa )]cos[(φs +ηs )]

− ρ cos[ζ − 2
ρ+2 (φa +ηa )].

	 	 	                                

(8)

    For the case of a one-cell SQUID, the transformed coordinates and junction potential energy 

are given by

                  

ξ1 = ζ + (φ +η) / 2
ξ2 = ζ − (φ +η) / 2,                                                                                                        (9)                                                                                                                                                                                                                                                               

	 	 	 	 	 	 	                           

and
       	

            
VJJ / EJ = − cos(ξi

i=1

i=2

∑ ) = −2cos(ζ )cos[(φ +η) / 2].
	 	                                          

(10)
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4.   βC = 0  Solution for a Single SQUID 

Using the coordinates given above in Eq. 9,  the kinetic energy term in the Hamiltonian may be 

written as

               
T = C

2
Φ

0

2π
⎛
⎝⎜

⎞
⎠⎟

2

2 ζ 2 + ηs
2 / 2{ },

                                            
	 	 	 	 	 	 	 	     

                                                 (11)

and in dimensionless units as

             

T
EJ

=
Mζ

2
ζ,τ

2 +
Mη

2
η,τ

2

,	 	 	 	 	 	 	 	       (12)

with
              
   

              
Mζ = 2βC , Mη = βC / 2

	 	 	 	 	 	 	 	      (13)

              

η = βLicirc ,
EJ = ICΦ0 / 2π ,

where

              
βC = C 2π

Φ
0

⎛

⎝
⎜

⎞

⎠
⎟ IC RN

2 , βL = L(2π IC /Φ0 ), τ =ω ct, ω c = 2π
Φ

0

IC RN .
      	      

(14)

The inductive potential energy may be written as 

               
Vη = LIcirc

2 / 2 = EJβLicirc
2 / 2 = EJ

1
2 M sω s

2η2

		 	 	 	 	 
     (15)

with

               
ω s

2 = 2
βCβL

, icirc = Icirc / Ic .
	 	 	 	 	 	 	 	       (16)

      

The total Hamiltonian, including the forcing current potential,  is then given by

                    

              
H = T +VJJ +Vη − EJibζ ,

	 	 	 	 	 	 	 	      
(17)

which yields the equations of motion in terms of the transformed coordinates {ζ ,η}  as
 

              

βcζ ,ττ +ζ ,τ + sin(ζ )cos[(φ +η) / 2] = ib
βcη,ττ +η,τ +2cos(ζ )sin[(φ +η) / 2]+ βcωη

2η = 0  .	 	 	 	 	       (18)
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       For over-damped junctions we set βC = 0  and rewrite ζ  as ζ = θ + π / 2 .  The equations of 

motion for θ can then be written in the form used by Swift et al.1   as 

              

θ,τ = 1− cos(θ)cos[(φ +η) / 2] / ib = 1+ acos(θ)
η,τ +(2 / βL )η = 2sin(θ)sin[(φ +η) / 2], 	 	 	 	 	       (19)

where 

              a = − cos[(φ +η) / 2] / ib   and  τ = τib .        	 	 	 	 	 	      (20)

 
    Swift, Strogatz, and Wiesenfeld2 have shown that for a system of single junctions connected in 

series, a perturbation theory, based on the exact solution for a single junction, can be developed 

to determine the DC voltage for the coupled junction system.  The set of relative phases for the 

junctions is not determined by the theory, but there are optimal sets where the stability of the 

array is maximized.  For the SQUID problem, we have extended this theory to determine, in 

addition to the perturbed frequency ωDC[ib ,φDC ,βL ], the time dependence of the effective 

junction phase ζDC = ζ0 (ωDCt),  and the induced flux ηDC = βLicirc,DC  (or equivalently a description 

in terms of the two junction phases ξ1  and ξ2 ) as functions  of ib , φ  and βL . 

     To develop a perturbation expansion for θ  and η ,  we rewrite the θ  equation of motion as

             θ,τ = 1+ a0 cos(θ) + (a − a0 )cos(θ) ,  with  a0 = − cos[(φ + η ) / 2] / ib ,                           (21)                       

where
  

             
η = 1

T
η(ωτ )dτ

0

T

∫ , T = 2π /ω , η = η +δη.
	 	 	 	 	     

 (22)

        Treating the last term as a perturbation, the unperturbed equation of motion for θ  may be 

solved exactly yielding

              

             

θ0 (τ ) = 2 tan−1(b0
−1 tan(ϕ0 / 2)),

	 	 	 	 	 	 	

      (23)

where

             ϕ0 = 1− a0
2 τ = 1− a0

2 ibτ =ω0τ  and  b0 =
1− a0

1+ a0
.	 	 	 	       (24)
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       To obtain the first-order correction to the frequency, we use the θ  equation of motion to 

write

         

ω
ib

= dϕ
dτ

= dϕ
dθ

dθ
dτ

≈
1− a0

2

1+ a0 cos(θ)
1+ a0 cos(θ) + (a − a0 )cos(θ)[ ]

    = 1− a0
2 +

1− a0
2

1+ a0 cos(θ)
(a − a0 )cos(θ) = (ω0 +δω ) / ib .

              	 	       (25)

Using the trigonometric identity1

 

           
1

1+ a0 cos(θ0 )
= 1− a0 cos(ϕ0 )

1− a0
2

  and   cos(θ0 ) = cos(ϕ0 )− a0

1− a0 cos(ϕ0 )
	 	 	       (26)

the expression for the first-order frequency correction may then be written as
   

            
δω = ib

1
1− a0

2

1
2π

(cos(ϕ )− a0 )(a(ϕ )− a0 )dϕ.
0

2π

∫     	 	 	 	       (27)

To proceed further it is necessary to solve the equation of motion for η  to lowest order,  which is 

obtained by expanding the sin[(φ +η) / 2]  term in the equation of motion to first order in η , with 

solutions given the label η0

           

η,τ +(2 / βL )η = 2sin(θ0 )sin[ 1
2 (φ +η)] = 2sin(θ0 ){sin( 1

2φ)(1− 1
8η

2 + ...) + cos( 1
2φ)( 1

2η − ...}
η0 ,τ +(2 / βL )η0 ≈ 2sin(θ0 ){sin( 1

2φ) + cos( 1
2φ) 1

2η0}.      (28)

Using the exact zero-order solution for θ0 , sin(θ0 )  and cos(θ0 )  may be evaluated as

              
sin(θ0 ) =

1− a0
2 sin(ω0 τ )

1− a0 cos(ω0 τ )
, cos(θ0 ) =

cos(ω0 τ ) − a0

1− a0 cos(ω0 τ )
.
  	 	 	 	       (29)

This allows the re-expression of the lowest order η0 equation of motion as
      
 
              

η0,τ + f (τ )[sin(φ / 2) +η0 cos(φ / 2)]+2η0 / βL = 0,
	 	 	 	 	       (30)

where

             

f (τ ) = sin(ω0τ ) fsin

1− a0 cos(ω0τ )
, fsin = −2 1− a0

2 .
                                                                  

      (31)

                                                    

As a first-order ordinary differential equation, the η0  equation of motion may be solved exactly
as
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ηs

0 (τ ) = −e
− (2/βL +cos(φ /2) f (τ '))dτ '

0

τ

∫ sin(φ / 2) f (τ '
0

τ

∫ )e
(2/βL +cos(φ /2) f (τ ''))dτ ''

0

τ '

∫ dτ '.
	 	     

 (32)

The integral in the two exponential factors may be carried out to yield

               
f (τ '

0

τ

∫ )dτ ' =
− 1− a0

2 {ln[1− a0 cos( ω0τ )]− iπ / 2}
a0
ω0

,
  	       	 	 	     

	 	 	                   	 	 	 	 	                                          
(33)

allowing the solution to be written as   

              

η0 = −e−2τ /βL e( 1−a0
2 cos(φ /2)/a0ω0 ) ln[1−a0 cos(ω0τ )] ×

e2τ '/βL e(− 1−a0
2 cos(φ /2)/a0ω0 ) ln[1−a0 cos(ω0 ′τ )] fsin sin(φ / 2)sin(ω0 ′τ )

(1− a0 cos(ω0 ′τ ))−∞

τ

∫ d ′τ . 	 	 	       (34)

  

Due to the fact that 

       

              
1− a0

2 cos(φ / 2) / a0ω0 ) = −1,
                                                                                       

(35)

the denominator in the integrand is canceled out and the integration can be carried out exactly, 

yielding

              
η0 (τ ) = − 2

ib
sin(φ / 2)

⎡

⎣
⎢

⎤

⎦
⎥

cos(ω0τ )− csin(ω0τ )
(1+ c2 )(1− a0 cos(ω0τ ))
⎡

⎣
⎢

⎤

⎦
⎥=κ cos(ω0τ )− csin(ω0τ )

1− a0 cos(ω0τ )
,

              (36)

where

              
c = 2 / (ω0βL ), κ = − 2

ib
sin(φ / 2)

1+ c2

⎡

⎣
⎢

⎤

⎦
⎥.
	 	 	 	 	 	       (37)

     The first-order correction to the rotation frequency

              
δω = ib

1
1− a0

2

ω0

2π
(cos(ω0τ )− a0 )[a(ϕ0 )− a0 (ϕ0 )]dτ ,

0

2π

∫                                             
(38)

may now be carried out by expanding a(ϕ0 )  in terms of powers of η0 .   The integration required 

after expanding 

 

              
a(ϕ0 ) = − cos[ 1

2 (φ +η0 (τ ))] / ib
	 	 	 	 	 	

	       (39)

 to any desired order in η0 , may be carried out in closed form.  To second order in η0  this yields
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δω = − sin(φ / 2) η (a0 −
1
a0

)( 1
2ib

)

− cos(φ / 2)( 1
8ib

) η2 (a0 −
1
a0

) + κ 2

a0

1
1− a0

2
− (1+ c2 )1+ (a0 −1) / b

a0
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,
       	       (40)

where

              
η = −κ 1+ a0 − b0

−1

a0 (1+ a0 ) 		 	 	 	 	 	 	 	       (41)

and

              
η2 =κ 2 1

(1+ a0 )
b0
−1

1− a0
2 + (1+ c2 )(1+ a0 − b0

−1

a0
2

⎧
⎨
⎩

⎫
⎬
⎭ .	 	 	 	 	       (42)

    Making the replacement
  
               

ω0 →ωDC = ω0 + δω
	 	 	 	 	 	 	 	      

(43)
 

in the expressions for η0  and θ0   then yields the first order unperturbed solutions ηDC and θDC .     

    The unperturbed flux ηDC can also be expressed in terms of ζ0  as 
           

              

ηDC = −2sin(φDC / 2)
ib (1+ c2 )(1− a0

2 )
a0 − 1+ c2 (1− a0

2 ) sin(ζ0 − (π / 2 +ψ ))⎡
⎣

⎤
⎦

= p + q sin(ζ0 − (π / 2 +ψ )), 	 	 	      
(44)

where the phase shift  ψ is given by

              ψ = sin−1 (ibβL / 2) / 1+ (ibβL / 2)2⎡
⎣

⎤
⎦. .	 	 	 	 	 	       (45)

In this form, ηDC has both a constant and an oscillating component, and the result can be seen to 

make sense physically by considering the supercurrent IC sin(ζ )  going through the effective ζ
 

junction.  This current amplitude will be a maximum when ζ = ±π / 2,  at which point ηDC will 

be at a minimum (for ψ = 0 ) and vice versa.   As the SQUID inductance increases from zero, the 

oscillating part of ηDC will be shifted in phase by an amount that is a function of the flux ibβL .  

      Below is a plot showing ηDC  (black) and  ηDC  obtained by a numerical solution (green) of the 

coupled ODEs for ib = 1.05, φDC = 0.2π and βL = 1.0, where the motion is markedly non-

sinusoidal.  It can be seen that the value obtained for the frequency is fairly accurate, while the 
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analytic expression for the amplitude of  ηDC  differs from the amplitude of the numerical 
solution by about one to two percent.

                        

                                  

τ

η

	 	 	 	   

     Figure 2.   SQUID-Induced Flux η(τ ) vs τ

5. Linear Response of  a SQUID to an RF Signal for the    βC =0  Case

     To determine the linear response of a SQUID to an rf signal,  we write the equations of 
motion for the effective phase ζ  

              
βcζ ,ττ +ζ ,τ + sin[ζ ]cos[(φ +η) / 2] = ib

	 	 	 	 	 	      
(46)

in terms of the unperturbed solution ζDC , ηDC{ }  and denote the linear response to the RF signal 

asδζ , where the RF signal is given by  δφ = Asin(ω rfτ ).  Rewriting the equations of motion with 

               
ζ = ζDC + δζrf and  φ = φDC + Asin(ω rfτ )

	 	 	 	 	 	      
(47)

then yields
          

       δζrf ,τ + cos[ζDC ]cos[(φDC +ηDC ) / 2]δζrf − sin[ζDC ]sin[(φDC +ηDC ) / 2] A
2 sin(ω rfτ ) = 0,         (48)

where we have subtracted out the DC solution and kept only linear terms in δζ and A.  Assuming 

that the frequency of the RF signal is much less than ωDC ,  it is reasonable to average over the 

rapid oscillations of ζDC and ηDC  which yields 

     
δζrf ,τ + cos[ζDC ]cos[(φDC +ηDC ) / 2] δζrf − sin[ζDC ]sin[(φDC +ηDC ) / 2] A

2 sin(ω rfτ ) = 0.
   

(49)
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The solution for the linear response δζRF can be written in terms of the two correlation functions 

as  

        δζrf = A
2

sin(ζDC )sin(φDC +ηDC

2
)

cos(ζDC )cos(φDC +ηDC

2
) sin(ω rfτ )−ω rf cos(ω rfτ )

cos(ζDC )cos(φDC +ηDC

2
)

2

+ω 2
rf

.	 	      (50)

This may be re-expressed in the simpler form of a single sinusoid as
 

            δζrf = A
2

sin(ζDC )sin(φDC +ηDC

2
)

sin(ω rfτ − Ψrfi )

ω rf
2 + cos(ζDC )cos(φDC +ηDC

2
)

2
,                                              

(51)

where the RF phase shifts is given by 

           
Ψrf = sin−1 ω rf / ω rf

2 + cos(ζDC )cos(φDC +ηDC

2
)

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.
  	 	 	 	 	 

     (52)

     It can be easily seen that Ψrf  will approach zero as the signal frequency ω rf  goes to zero.  A 

useful corollary to this behavior is that as the coscos  correlation function becomes small and 

of the same order as ω rf , the RF phase shift will depend sensitively on βL  or φDC  for fixed ω rf , 

or conversely it will be a steep function of ω rf  when βL  and φDC  are fixed.

By using the expressions

           

           
cos(ζDC ) = −

1− aDC
2 sin(ωDC τ )

1− aDC cos(ωDC τ )
, sin(ζDC ) = cos(ωDC τ )− aDC

1− aDC cos(ωDC τ )
,
	                               (53)

the correlation functions can expanded to any order in (ηDC )n
 and integrated term by term.   Thus 

to second order in ηDC  we have 	

	 	 	 	 	 	 	     

 	 	 	 	 	       (54)

 

cos[ζDC ]cos[(φDC +ηDC ) / 2] =
ωDC

2π
cos[ζDC (τ )]cos[(φDC +ηDC (τ )) / 2]

0

2π /ωDC∫ dτ

= −
ωDC

ib
−

sin(φs / 2)
2

κc (1+ aDC − bDC
−1 )

aDC
2 (1− aDC )

+
cos(φs / 2)

4
κ 2c {1− bDC

−1 + aDC[1− aDC (1+ aDC − 3
2 bDC

−1 )]}
(1− aDC )aDC (1+ aDC )2

⎧
⎨
⎩

⎫
⎬
⎭

and 	 	 	 	 	 	 	 	 	 	 	 	      

(55)
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sin[ζDC ]sin[(φDC +ηDC ) / 2] =
ωDC

2π
sin[ζDC (τ )]sin[(φDC +ηDC (τ )) / 2]

0

2π /ωDC∫ dτ

= cos(φs / 2)sin(φs / 2)I1 + (cos(φs / 2)2 + cos(φs / 2) −1)κ
2

I2 − aDC[cos(φs / 2) − 1
2 sin(φs / 2)2 ]κ

2
I3

− sin(φs / 2)cos(φs / 2)κ
2

8
(1− c2 )I4 + aDC sin(φs / 2)cos(φs / 2)κ

2

8
I5 − sin(φs / 2)cos(φs / 2)κ

2

8
c2I6 .

The expressions for the integrals I1  through I6  are given in appendix A.

  Plots of the two correlation functions sin(ζDC )sin(φDC +ηDC

2
) and cos(ζDC )cos(φDC +ηDC

2
) ,  

expanded to second order in ηDC , are plotted below for ib = 1.05  and ib = 4  (n.b. vertical scales 

differ).

  
                                  Figure 3.                                                                          Figure 4.

                        cos(ζDC )cos(φDC +ηDC

2
)                                             cos(ζDC )cos(φDC +ηDC

2
)

                  vs. φDC and βL  with   ib = 1.05                                       vs. φDC and βL  with  ib = 4.0
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                          Figure 5.                                                                          Figure 6.   

sin(ζDC )sin(φDC +ηDC

2
)  vs. φDC andβL , ib = 1.05         sin(ζDC )sin(φDC +ηDC

2
)  vs. φDC andβL , ib = 4.0

It can be seen that for small values of φDC or βL  for any value of ib , or for large βL and large ib , 

that  coscos  will be small, allowing the RF phase shift to be sensitive to small changes in 

frequency.   We have plotted the RF phase shift below for  βL = 5.0 ,  for signal frequencies from 

ω rf = 0  to ω rf = 0.01ω c .  It can be seen that Ψrf  is a very steep function of ω rf  for small values 

of φDC for the chosen SQUID parameters ( ib = 4 for both plots).  

                  Figure 7.                                                                            Figure 8.
Two Cell SQUID  Phase Ψrf vs φDC and ω rf                Two Cell SQUID Phase Ψrf vs φDC and ω rf
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6.    βC =0  Solution for a Two-Cell SQUID

    For external magnetic fluxes near  φa  0, φs  0 , the equations of motion for the two-cell 

SQUID can be solved using the perturbation method developed above for the single cell SQUID.  

From the numerical solution for the two-cell case, it can be seen, however, that using the 

approximate solution  of Eq. 23 for the effective ζ  junction (which consists of a string of single 

pulses), will not be valid when the ηa and ηs  amplitudes become large enough to markedly affect 

the ζ  junction, as shown in the example below.

   120 130 140 150
Τ

0.7

0.8

0.9

1.0

ΖDC,Τ

ΖDC Voltage �ib�1.05, Φa�3.14, Φs�1.04�

   

120 130 140 150
Τ

�0.6

�0.4

�0.2

0.2

0.4

ΗaDC

ΗaDC �ib�1.05, Φa�3.14, Φs�1.04�

 
	 	
	 	          Figure 9.                                                                 Figure 10.
       Two-Cell SQUID  Voltage dζDC (τ ) / dτ vs.τ               Two-Cell SQUID Induced Flux ηaDC

(τ ) vs.τ
   

    

120 130 140 150
Τ

�0.4

�0.2

0.2

0.4

0.6

0.8

ΗsDC

ΗsDC �ib�1.05, Φa�3.14, Φs�1.04�

	 	          Figure 11.
          Two-Cell SQUID Induced Flux ηsDC

(τ )  vs. τ  
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To cover the entire range for φa and φs  it will be necessary to include the time-dependent 
ηa and ηs  solutions in determining ζ (τ )  and perhaps an iteration of the coupled solutions.  In 

what follows, we develop the solutions for the case where φa and φs  are near zero.

     
 Using the coordinates given above in Eq. 7,  the kinetic energy term in the Hamiltonian may 

be written as

               
T =

C
2

Φ
0

2π
⎛
⎝⎜

⎞
⎠⎟

2

(2 + ρ) ζ 2 + 2 ηs
2 +

2ρ
2 + ρ

ηa
2⎧

⎨
⎩

⎫
⎬
⎭ ,	 	 	 	 	      (56)

and in dimensionless units as

             

T
EJ

=
Mζ

2
ζ,τ

2 +
Ms

2
ηs,τ

2 +
Ma

2
ηa,τ

2

,	 	 	 	 	 	 	      
(57)

with

              
Mζ = (2 + ρ)βC , M s = 2βC , Ma =

2ρ
2 + ρ

βC

              

ηs = βLsis , ηa = βLaia ,
is = (i1 + i2 ) / 2, ia = (i1 − i2 ) / 2,
βLs = βL + βM , βLa = βL − βM .

	 	 	 	 	 	 	       (58)

The inductive potential energy may be written as 

             
Vη = Lk .l

k ,l=1

2

∑ Ik Il = EJ (βL )k ,l
k ,l=1

2

∑ ikil = EJ
1
2 M sω s

2ηs
2 + 1

2 Maωa
2ηa

2⎡⎣ ⎤⎦ 	 	 	     
 (59)

with
  

              
ω s

2 = 1
βCβLs

, ωa
2 = (2 + ρ)

ρ
1

βCβLa

.
	                 	                                                      

(60)

      

The total Hamiltonian, including the forcing current potential,  is given by
	 	 	 	 	 	 	 	 	 	 	 	      

(61)
              

H = T +VJJ +Vη − EJ (2 + ρ)ibζ ,

which yields (using VJJ  given in Eq. 10) the equations of motion

            

Mζ ζ,ττ + (2 + ρ)ζ,τ + 2sin[ζ + ρ
2+ρ (φa +ηa )]cos(φs +ηs )

+ ρ sin[ζ − 2
2+ρ (φa +ηa )] = (2 + ρ)ib , 	 	 	 	     

 (62)
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M sηs,ττ + 2ηs,τ + 2cos[ζ + ρ
2+ρ (φa +ηa )]sin(φs +ηs ) + M sω s

2ηs = 0,
	 	      

(63)

and

              

Maηa,ττ + 2ρ
2+ρ ηa,τ + 2ρ

2+ρ sin[ζ + ρ
2+ρ (φa +ηa )]cos(φs +ηs )

− 2ρ
2+ρ sin[ζ − 2

2+ρ (φa +ηa )] + Maωa
2ηa = 0. 	 	 	 	       (64)

7. Solution for the ζ  Equation of Motion for a Two-Cell SQUID with    βC =0

    The equation of motion for ζ  may be solved in essentially the same manner as for the single- 

cell SQUID case.  The two sin terms are first expanded and regrouped to yield

    
            

Mζ ζ,ττ + (2 + ρ)ζ,τ + 2[sin(ζ )aζ + cos(ζ )bζ ] = (2 + ρ)ib ,
	 	 	 	       (65)

with

             

aζ = cos[ ρ
2+ρ (φa +ηa )]cos(φs +ηs ) + ρ

2 cos[ 2
2+ρ (φa +ηa )]

bζ = sin[ ρ
2+ρ (φa +ηa )]cos(φs +ηs ) −

ρ
2 sin[ 2

2+ρ (φa +ηa )]. 	 	 	 	      
(66)

Writing 

                
sin(ζ )aζ + cos(ζ )bζ = [sin(ζ )cos(γ ) + cos(ζ )sin(γ )] aζ

2 + bζ
2 = sin(ζ + γ ζ )cζ ,

	      
(67)

where
               

γ ζ = tan−1(bζ / aζ ), cζ = aζ
2 + bζ

2 ,
	 	 	 	 	 	 	      

(68)

the lowest order equation of motion for ζ may then be re-expressed with γ = γ ζ  as

             
βC (ζ + γ ),ττ + (ζ + γ ),τ + (2cζ / (2 + ρ))sin(ζ + γ ) = ib .

	 	 	      
(69)

Changing to a new coordinate 
                

                
Z = ζ + γ

                 
(70)

then yields an equation of motion equivalent to that for a single Josephson junction.

Setting

                

a = −
2cζ

ib (2 + ρ)    	 	 	 	 	 	 	 	 	      
(71)

allows the equations of motion for  Z = θ + π / 2  for the βC = 0 case to be cast in exactly the 

same form as given above in Eq. 18.
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     Shown below are surface plots of the critical current 2
2+ρ cζ  vs φs  and φa  for various values 

of ρ , and vs ρ   for the-two cell SQUID                                                       

      
  Figure 12.  Critical Current vs.  φa ,φs, ρ = 1{ }         Figure 13. Critical Current vs. φa ,φs, ρ = 4{ }

 

       
   Figure 14.  Critical Current vs. φa ,φs, ρ = 0.3{ }     Figure 15. Critical Current vs. φs, ρ, φa = 2.0{ }
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                                            Figure 16.      Critical Current vs.  φa ,ρ, φs, = 2.0{ }

8.    βC =0  Solution for the ηs  Equation of Motion

    To derive the ηs  equation of motion, we first re-express the cos(ζ0 )and sin(ζ0 )  terms as
    

               

  

cos(ζ0 ) = cos(Z0 − γ ) = cos(Z0 )cos(γ ) + sin(Z0 )sin(γ )

=
− 1− a0

2 sin( ω0 τ )cos(γ ) + (cos( ω0 τ ) − a0 )sin(γ )
1− a0 cos( ω0 τ )

sin(ζ0 ) = sin(Z0 − γ ) = sin(Z0 )cos(γ ) − cos(Z0 )sin(γ )

=
(cos( ω0 τ ) − a0 )cos(γ ) + 1− a0

2 sin( ω0 τ )sin(γ )
1− a0 cos( ω0 τ )

.

	 	 	 	       (72)

To obtain the equation of motion to first order in ηs  we first approximate ηa → ηa ≈ 0
to get
 

               

M sηs,ττ + 2ηs,τ + 2cos(ζ + ρ
2+ρ φa )sin(φs +ηs ) + M sω s

2ηs = 0.
	 	 	      

(73)

The βC = 0 equation of motion to first order in ηs  may then be written using the results of Eq. 53 

as
 

                
η0

s,τ + f (τ )[sin(φs ) +η0
s cos(φs )]+ηs

0 / βLs = 0,
	 	 	 	 	      

(74)

where
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f (τ ) = sin( w0τ ) fsin

1− a0 cos( w0τ )
+ (cos( w0τ )− a0 ) fcos

1− a0 cos( w0τ )
,

fsin = − 1− a0
2 cos(γ − kφa ),

fcos = sin(γ − kφa ),
		 	 	 	 	       (75)

and

           
k = ρ

2 + ρ
.
	 	 	 	 	 	 	 	 	 	       (76)

The solutionηs
0 of this first-order ODE can be written as

            
ηs

0 (τ ) = −e
− (1/βLs +cos(φs ) f (τ '))dτ '

0

τ

∫ sin(φs ) f (τ '
0

τ

∫ )e
(1/βLs +cos(φs ) f (τ ''))dτ ''

0

τ '

∫ dτ '.
	 	      

(77)

The integral in the two exponential factors may be carried out to yield

          

 

f (τ '
0

τ

∫ )dτ ' =
− sin(γ − kφa )( ω0τ )− 1− a0

2 cos(γ − kφa ){ln[1− a0 cos( ω0τ )]− iπ / 2}
a0
ω0

+ sin(γ − kφa )(1− a0
2 )2 tan−1[tan( ω0τ / 2) /


b]

a0
ω0

.
      (78)

The tan−1  term above may be re-expressed as 2 tan−1[tan( ω0τ / 2) /

b] =


θ0 (τ )  and approximated 

by  

θ0 (τ ) ≈ ω0τ .  With this approximation the solution can be written as

             
ηs

0 (τ ) = e−Ωsτ −1
[1− a0 cos( ω0τ ')]1−λs

eΩsτ ' sin(φs ) f (τ ')
[1− a0 cos( ω0τ ')]λs −10

τ

∫ dτ ',
	 	 	      

(79)

where

             
Ωs = 1 / βLs + cos(φs )sin(γ − kφa )( 1− a0

2 −1) / a0 ,
 	 	 	 	 	      

(80)
                                               

and	 	 	 	 	 	 	 	 	 	 	

             
λs = 1+ cos(φs )cos(γ − kφa )

a0ib
= 1− (2 + ρ)cos(φs )cos(γ − kφa )

2cos(φs ) + ρ
.
	 	 	     

 (81)

The final integration required for the ηs
0
 solution can be carried out by expanding the 

denominator in the integrand as a series in   
a0  and can be written as	 	 	      (82)

       

  
ηs

0 (τ ) = − sin(φs
0 )

ω0
a0 (1− λs )

fsin 1−Ωs
F (τ ,λs −1,Ωs )

1− a0 cos( ω0τ )[ ]1−λs

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ fcos
(1− a0

2 )F (τ ,λs ,Ωs )−F (τ ,λs −1,Ωs )
a0 1− a0 cos( ω0τ )[ ]1−λs

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

where the evaluation of
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F (τ ,λ,Ω) = eΩ(τ '−τ )dτ '

1− a0 cos( ω0τ ')[ ]λ−∞

τ

∫ ,
	 	 	 	 	 	 	      

(83)

in terms of hypergeometric functions, is presented in Appendix B.  

      The integration required for the ηs
0

 solution can be carried out in closed form if  

λs = 0 .  This 

will be true if φa  and φs  are near 0.  With this assumption ηs
0

 can be written as

 

                
ηs

0 (τ ) = e0 + ec cos( ω0τ ) + es sin( ω0τ )
1− a0 cos( ω0τ )

,
	 	 	 	 	 	

      (84)

where

               

 

e0 = sin(φs )sin(γ − kφa )a0 /

Ω

ec = − sin(φs )[ 1− a0
2 cos(γ − kφa ) ω0 + sin(γ − kφa )


Ω] / ( ω0

2 +

Ω2 )

es = − sin(φs )[sin(γ − kφa ) ω0 − 1− a0
2 cos(γ − kφa )


Ω] / ( ω0

2 +

Ω2 ).

	 	      
(85)

    In the limit of γ → 0 ,  this expression for ηs
0
 has the same form as that for a single-cell 

SQUID if the doubled cell area is taken into account, i.e.,

              

η0

2
,φs

2
, βL

2
⎧
⎨
⎩

⎫
⎬
⎭
→ ηs ,φs ,βLs{ }.

	 	 	 	 	 	 	      
(86)

9.    βC =0  Solution for the ηa  Equation of Motion

        To obtain the equation of motion to first order in ηa  we first approximate
 

      
cos(φs +ηs ) ≡ cos(φs

+ ) = cos(φs )cos(ηs ) − sin(φs )sin(ηs ) ≈ cos(φs )(1− 1
2ηs

2 ) − sin(φs ) ηs
 
(87)

to get

              

Maηa,ττ + 2ρ
2+ρ ηa,τ + 2ρ

2+ρ sin[ζ + ρ
2+ρ (φa +ηa )]cos(φs

+ )

− 2ρ
2+ρ sin[ζ − 2

2+ρ (φa +ηa )] + Maωa
2ηa = 0. 	 	 	 	      

(87)

The βC = 0  equation of motion to first order in ηa  may then be written as

              

ηa,τ
0 + sin(ζ0 ) ax + axxηa

0{ } + cos(ζ0 ) bx + bxxηa
0{ } + 2+ρ

ρβLa
ηa

0 = 0
     	 	 	      

(88)

where
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ax = cos(kφa )cos(φs
+ )− cos(Kφa )

bx = sin(kφa )cos(φs
+ ) + sin(Kφa )

axx = −k sin(kφa )cos(φs
+ ) + K sin(Kφa )

bxx = k cos(kφa )cos(φs
+ ) + K cos(Kφa )

 	 	 	 	 	 	      
(89)

         

and where we have defined 

             
k =

ρ
2 + ρ

, and K =
2

2 + ρ
.
	 	 	 	 	 	 	      

(90)

With the ηa
0

 equation of motion rewritten as

              
η0

a,τ + f (τ )η0
a + g(τ ) + ( 1

k βLa
)η0

a = 0
	 	 	 	 	 	 	      

(91)

a solution can then be obtained as 

              
ηa

0 (τ ) = −e
− [(2+ρ )/βLa + f (τ ')]dτ '

0

τ

∫ e
[(2+ρ )/βLa + f (τ '')]dτ ''

0

τ '

∫ g(τ '
0

τ

∫ )dτ ',
	 	 	 	      

(92)

where the functions f (τ )and g(τ )  are given by

              

 

f (τ ) = sin( w0τ ) fsin

1− a0 cos( w0τ )
+ (cos( w0τ )− a0 ) fcos

1− a0 cos( w0τ )

fsin = − 1− a0
2 k cos(γ − kφa )cos(φs

+ ) + K cos(γ + Kφa )( )
fcos = k sin(γ − kφa )cos(φs

+ ) + K sin(γ + Kφa )
                                        

	 	 	 	 	 	 	 	 	 	 	      	           
	                	 	 	 	 	 	 	 	 	 	      

(93)

and

  

              

 

g(τ )= sin( w0τ )gsin

1− a0 cos( w0τ )
+ (cos( w0τ )− a0 )gcos

1− a0 cos( w0τ )

gsin = 1− a0
2 sin(γ − kφa )cos(φs

+ )− sin(γ + Kφa )( )
    gcos = cos(γ − kφa )cos(φs

+ )− cos(γ + Kφa )( )	 	 	 	 	 	 	 	 	 	 	 	      
(94)

The integral in the two exponential factors may be carried out as in the ηs
0 case above to yield

              
ηa

0 (τ ) = −e−Ωaτ 1
[1− a0 cos( ω0τ ')]1−λa

eΩaτ ' h(τ ')
[1− a0 cos( ω0τ ')]λa −10

τ

∫ dτ ',
	 	 	      

(95)

where

              
 
Ωa = (2 + ρ) / βLa + k sin(γ − kφa )cos(φs

+ ) + K sin(γ + Kφa ){ } 1− a0
2 −1)
a0

                    (96)
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and

              

λa = 1− k cos(γ − kφa )cos(φs
+ ) + K cos(γ + Kφa )

cos(φs
+ )

.
                                                          

(97)

                                               

The final integration required for the ηa
0
 solution can be carried out by expanding the 

denominator in the integrand as a series in   
a0 and can be written as

	 	 	 	 	 	 	 	 	 	 	 	      (98)

       

  
ηa

0 (τ ) = − gsinω0
a0 (1− λa )

1−Ωa
F (τ ,λa −1,Ωa )

1− a0 cos( ω0τ )[ ]1−λa

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ gcosa0

(1− a0
2 )F (τ ,λa ,Ωa )−F (τ ,λa −1,Ωa )

1− a0 cos( ω0τ )[ ]1−λ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

where the integrals  
 

eW (τ '−τ )

−∞

τ

∫
sin( ωτ ')dτ '

[1− a cos( ωτ ')]λ  and    
 

eW (τ '−τ )

−∞

τ

∫
sin( ωτ ')dτ '

[1− a cos( ωτ ')]λ     have been 

evaluated in Appendix B.
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11. Appendix A

     The integrals I1  through I8 are given by

I1 = 1
2π

(cos(x)− a0 )
1− a0 cos(x)0

2π

∫ dx =
1− a0

2 −1
a0

I2 = 1
2π

cos(x)[cos(x)− csin(x)]
[1− a0 cos(x)]20

2π

∫ dx = {2 − b0
−1 + 2a0[1− a0 (1− a0 − a0

2 + a0b0
−1)]}

2(1− a0 )a0
2 (1+ a0 )2 + (−1+ 2a0

2 )
2(1− a0 )a0

2 (1+ a0 )2 1− a0
2

I3 = 1
2π

[cos(x)− csin(x)]
[1− a0 cos(x)]20

2π

∫ dx = a0

(1− a0
2 )3/2

I4 = 1
2π

cos(x)3

[1− a0 cos(x)]30

2π

∫ dx = π
2a0

3 {−6 + [−2a0 + 4a0
3 − 2a0

5 + a0
2 (4 − 5b0

−1 + 2(−1+ b0
−1) + a0

4 (−2 + 6b0
−1)]

(1− a0 )2 (1+ a0 )3

− (−2 + 5a0
2 + 6a0

4 )
(1− a0

2 )5/2 }
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I5 = 1
2π

[cos(x)− csin(x)]2

[1− a0 cos(x)]30

2π

∫ dx = 1+ 2a0
2 + c2 (1− a0

2 )
2(1− a0

2 )5/2

I6 = 1
2π

cos(x)
[1− a0 cos(x)]30

2π

∫ dx = 3a0b0
−1

2(1− a0 )2 (1+ a0 )3

12. Appendix B

    The integral appearing in Eq. 99 may be evaluated by expanding the integrand denominator in 

a series in powers of  
a , which yields

              

 

eW (τ '−τ )

−∞

τ

∫
dτ '

[1− a cos( ωτ ')]λ

= eW (τ '−τ )

−∞

τ

∫ 1+ λ a cos( ωτ ) + λ(λ +1)[ a cos( ωτ )]
2!

2

+ λ(λ +1)(λ + 2)[ a cos( ωτ )]
3!

+ ...3
⎧
⎨
⎩

⎫
⎬
⎭
.

Each term may now be integrated exactly,  and the coefficients of each  cos(m wτ )and  sin(m wτ ) may 

be summed to yield a Fourier series with Fourier coefficients proportional to a hypergeometric 

function.  The final result is given by

            

  

F (τ ,λ,W ) = eW (τ '−τ )

−∞

τ

∫
dτ '

[1− a cos( ωτ )]λ
= 2 F1( λ

2 , λ+1
2 ,1; a2 ) /W

+ 2 Γ(n + λ)
Γ(λ)n!n=1

∞

∑
a
2

⎛
⎝⎜

⎞
⎠⎟

n W cos(n ωτ ) + n wsin(n ωτ )
(n ω )2 +W 2 2 F1( n+1+λ

2 , n+λ
2 ,n +1; a2 ).

                 

Each term in the summation increases the accuracy of the result by roughly one decimal point.  
      Integration by parts can be employed to determine the integral
 

                
eW (τ '−τ )

−∞

τ

∫
sin( ωτ ')dτ '

[1− a cos( ωτ ')]λ
= 1
ω a(1− λ)

[1− a cos( ωτ )]1−λ −WF (τ ,λ −1,W ){ }.
.  

The cosine counterpart may be integrated directly to give

                
eW (τ '−τ )

−∞

τ

∫
cos( ωτ ')dτ '

[1− a cos( ωτ ')]λ
= 1
a
F (τ ,λ,W )−F (τ ,λ −1,W ){ }.

.
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